CT 스캔에 직접적인 기계적 시뮬레이션
Working directly on voxel data, our easy-to-handle finite element (FE) simulation:
- Can be used to apply static mechanical loading by choosing between directed force, torque, and pressure
- Can be used to simulate material probes as well as components for both mono- and multi-materials with linear-elastic material properties
- Makes it very simple to build simulation models even for highly complex structures such as foams or components with microporosity, as well as biomechanical structures
- Utilizes subvoxel-accurate, local adaptive surface determination
- Calculates stress concentration around microdefects by incorporating the results of a porosity analysis run using any algorithm in VGSTUDIO MAX with a single click
- Provides a seamless workflow from segmentation to structural simulation within a single software


결과
See your results directly on the scan of the real component:
- Calculate and visualise von Mises stress and strain, as well as the maximum principal stress, for evaluating the plastic yield limit or estimating rupture risk.
- Visualise the stress tensor field as force lines that illustrate the direction of the eigenvectors of the stress tensor, with their length corresponding to the magnitude of the corresponding eigenvalues.
- Display the magnitude of displacement, colour-coded at each point in the calculated volume, to visualize the calculated deformation.
핫스팟에서의 응력 농도
부품에서 중요하게 로드된 영억 식별:
- 폰 미제스 응력의 로컬 최대값,최대 전단 응력 및 최대 주요 응력을 검출하고 시각화하고 변위의 크기를 검출합니다.
- 선택된 응력 구성요소 또는 변위가 특정 임계값을 초과하는 연결 영역을 식별하고 시각화합니다.


CAD 기반 시뮬레이션과의 비교
해당 CAD 모델에서 시뮬레이션이 있는 실제 부품의 CT 데이터를 기반으로 시뮬레이션 결과 비교:
- 불연속성 및 형태 편차가 있는 CAD 모델과 실제 부품을 둘 다 시뮬레이션합니다.
- 폰 미제스 응력,최대 주요 응력,최대 전단 응력 또는 변위의 크기를 포함한 동일하거나 유사한 객체에 대해 두 가지 시뮬레이션 결과를 자동으로 비교합니다.
- 각 구조 점에 대한 값의 차이를 계산하고 부품의 색상 코드 결과를 시각화합니다.


검증된 결과
The simulation method in the Structural Mechanics Simulation module has been numerically validated against conventional finite element analysis results, showing good agreement. It has also been experimentally validated against physical tests, which have shown that it is capable of identifying the most likely locations of failure in a structural component. (Predicting Failure in Additively Manufactured Parts Using X-Ray Computed Tomography and Simulation, Peer Reviewed Paper, 7th International Conference on Fatigue Design 2017)
